

ED-476

M.Sc. 2nd Semester Examination, May-June 2021

COMPUTER SCIENCE

Paper - V

Numerical Analysis

Time : Three Hours] [Maximum Marks : 100

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

1. (a) Perform three iterations of the bisection method to obtain the smallest root of the equation

 $f(x) = x^3 - 5x + 1 = 0$

- (b) Find the iterative formula for $\sqrt[k]{N}$ by Newton's method.
- (c) Write the convergence of Regula falsi method.

DRG_61(4)

(Turn Over)

(2)

Unit-II

2. (*a*) Apply Gauss-Jordan method to solve the equations

x + y + z = 92x - 3y + 4z = 133x + 4y + 5z = 40

(b) Using Cholesky method, solve the system of equations

[1	2	3	$\int x^{-}$		5	
2	8	22	<i>y</i>	=	6	
3	22	82				

(c) Find the largest eigen value in modulus and the corresponding eigen vector of the matrix

$$A = \begin{bmatrix} -15 & 4 & 3\\ 10 & -12 & 6\\ 20 & -4 & 2 \end{bmatrix}$$

using power method.

Unit-III

3. (a) Given that f(-1) = 9, f(0) = 5, f(2) = 3and f(5) = 15. By using Lagrange's interpolation formula, find unique polynomial of degree 3 or less. Hence, evaluate f(7).

DRG_61(4)

(Continued)

1	2)
L	J)

(b) Using Newton's divided difference formula evaluate f(15), given :

x	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

(c) Find the least squares approximation of first degree for the discrete data :

x	-2	-1	0	1	2		
f(x)	15	1	1	3	10		
Evaluate $f(4)$.							

Unit-IV

4. (a) Find first and second order derivatives of y with respect to x at x = 1.1 from the following table :

x	1.0	1.1	1.2	1.3	1.4	1.5	1.6
y	7.0	8.4	8.7	9.1	9.4	9.7	10.0

(b) A solid of revolution is formed by rotating about the x axis, the area between the x axis and lines x = 0 and x = 1 and curve through the points with the following co-ordinates.

x	0	0.25	0.5	0.75	1
f(x)	1	0.9896	0.9589	0.9080	0.8415

(c) Find solution of integration of function $\frac{1}{x}$ using Weddle's rule between limit x = 1 to x = 2.

DRG_61_(4)

(Turn Over)

(4)

Unit-V

5. (a) Use Milne's predictor-corrector method to obtain the solution of the equation

$$\frac{dy}{dx} = x - y^2$$

at x = 0.5 given that

x	0	0.2	0.4	0.6
<i>y</i> (<i>x</i>)	0.00	0.02	0.07	0.17

(b) Using Runge Kutta method of order 4, approximate the value of y(0.2) with step size h = 0.1. Given that

$$\frac{dy}{dx} = 2xy^2 \quad \text{and} \quad y(0) = 1.$$

(c) Using Euler's method, find approximate value of y when x = 0.6 of

$$\frac{dy}{dx} = 1 - 2xy$$

given that y = 0 when x = 0 (take h = 0.2).

DRG_61_(4)

100