ED-476

M.Sc. 2nd Semester

Examination, May-June 2021

COMPUTER SCIENCE

Paper - V
Numerical Analysis

Time : Three Hours] [Maximum Marks : 100
Note : Answer any two parts from each question. All questions carry equal marks.

Unit-I

1. (a) Perform three iterations of the bisection method to obtain the smallest root of the equation

$$
f(x)=x^{3}-5 x+1=0
$$

(b) Find the iterative formula for $\sqrt[k]{N}$ by Newton's method.
(c) Write the convergence of Regula falsi method.

(2)

Unit-II

2. (a) Apply Gauss-Jordan method to solve the equations

$$
\begin{aligned}
& x+y+z=9 \\
& 2 x-3 y+4 z=13 \\
& 3 x+4 y+5 z=40
\end{aligned}
$$

(b) Using Cholesky method, solve the system of equations

$$
\left[\begin{array}{rrr}
1 & 2 & 3 \\
2 & 8 & 22 \\
3 & 22 & 82
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
5 \\
6 \\
-10
\end{array}\right]
$$

(c) Find the largest eigen value in modulus and the corresponding eigen vector of the matrix

$$
A=\left[\begin{array}{rrr}
-15 & 4 & 3 \\
10 & -12 & 6 \\
20 & -4 & 2
\end{array}\right]
$$

using power method.

Unit-III

3. (a) Given that $f(-1)=9, f(0)=5, f(2)=3$ and $f(5)=15$. By using Lagrange's interpolation formula, find unique polynomial of degree 3 or less. Hence, evaluate $f(7)$.

(3)

(b) Using Newton's divided difference formula evaluate $f(15)$, given :

x	4	5	7	10	11	13
$f(x)$	48	100	294	900	1210	2028

(c) Find the least squares approximation of first degree for the discrete data:

x	-2	-1	0	1	2
$f(x)$	15	1	1	3	10

Evaluate $f(4)$.

Unit-IV

4. (a) Find first and second order derivatives of y with respect to x at $x=1.1$ from the following table:

x	1.0	1.1	1.2	1.3	1.4	1.5	1.6
y	7.0	8.4	8.7	9.1	9.4	9.7	10.0
(b) A solid of revolution is formed by							

x	0	0.25	0.5	0.75	1
$f(x)$	1	0.9896	0.9589	0.9080	0.8415

(c) Find solution of integration of function $\frac{1}{x}$ using Weddle's rule between limit $x=1$ to $x=2$.

DRG_61_(4)

(4)

Unit-V

5. (a) Use Milne's predictor-corrector method to obtain the solution of the equation

$$
\frac{d y}{d x}=x-y^{2}
$$

at $x=0.5$ given that

x	0	0.2	0.4	0.6
$y(x)$	0.00	0.02	0.07	0.17

(b) Using Runge Kutta method of order 4, approximate the value of $y(0.2)$ with step size $h=0.1$. Given that

$$
\frac{d y}{d x}=2 x y^{2} \text { and } y(0)=1 .
$$

(c) Using Euler's method, find approximate value of y when $x=0.6$ of

$$
\frac{d y}{d x}=1-2 x y
$$

given that $y=0$ when $x=0$ (take $h=0.2$).

