

ED-322

M.Sc. 1st Semester Examination, March-April 2021

COMPUTER SCIENCE

Paper - I

Mathematical Foundation of Computer Science

Time: Three Hours] [Maximum Marks: 100

Note: Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

1. (*a*) Prove that :

(i)
$$\sim (p \vee q) \Leftrightarrow (\sim p) \land (\sim q)$$

(ii)
$$\sim (p \land q) \Leftrightarrow (\sim p) \lor (\sim q)$$

- (b) Explain the following terms and also give example to explain them:
 - (i) Quantifier
 - (ii) Negation of a Quantifier

DRG_46_(4)

(Turn Over)

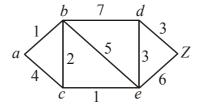
(c) Let T be the set of all triangles in a plane and $R = \{(a, b) \mid \text{ area of } \Delta a = \text{ area of } \Delta b\}$; that is a R b if and only if area of $\Delta a = \text{ area of } \Delta b$. Prove that R is an equivalence relation.

Unit-II

- **2.** (a) A lattice L is distributive if and only if $(a \lor b) \land (b \lor c) \land (c \lor a) = (a \land b) \lor (b \land c) \lor (c \land a) \ \forall a, b, c, \in L$.
 - (b) Let (L, \vee, \wedge) be an algebraic system, where \vee and \wedge are binary operations satisfying the absorption law. Show that \vee and \wedge also satisfy the idempotent law.
 - (c) If $(B, +, \cdot, ')$ is a Boolean algebra, then prove that the following statements are equivalent:
 - (i) $a \cdot b' = 0$
 - (ii) a+b=b
 - (*iii*) a' + b = 1
 - (iv) $a \cdot b = a$

Unit-III

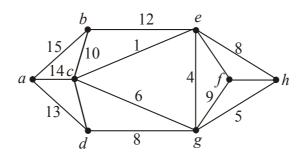
3. (a) Prove that the inverse of the product of two elements of a group is the product of the inverse taken in the reverse order i.e. $(ab)^{-1} = b^{-1} a^{-1} \forall a, b \in G$.


(b) Define Grammar. Find the phase-structure grammar that generate the set:

$$L = \{a^n \ b^{2n}, \ n \ge 1\}$$

(c) Show that the order of a subgroup of a finite group divides the order of the group.

Unit-IV


- **4.** (a) Prove that in any graph, the number of vertices of odd degree is always even.
 - (b) Prove that if the intersection of two path in a graph is a disconnected graph. Show that the union of the two path has at least one circuit.
 - (c) Write an algorithm for shortest path in weighted graph and use it to find shortest path from a to z in the graph shown in figure where number associated with the edges are the weights.

(4)

Unit-V

5. (a) Find the minimum spanning tree for the graph:

- (b) Prove that A tree with n vertices has (n-1) edges.
- (c) Express the following algebraic expression in binary tree:
 - (i) (x-y) + ((y+z) + w)
 - (ii) $(((a \times b) + c) d) \times (e + f)$