(4)

Roll No.....

http://www.hyvonline.com

Total No. of Section : 03 Total No. of Printed Pages: 04

Code No. : B-411(A)

Annual Examination - 2017

BCA-II

BCA-201

THEORETICAL FOUNDATION OF COMPUTER SCIENCE

Paper - I

		NUMERICAL ANALYSIS				
	Time :	3 Hrs.				Max.Marks : 50 Min Marks : 20
on's $\frac{1}{3}$	Note :			• 1	•	g 10 questions, is wer type questions
find the		and Section		of long a		questions. Section
				ection-'A	.')	
		» ((IVerly.5sho	rt answer t	ype ques	tions. Ansv	wer in one or two
5.2	$dx + x^3$	lines.)				(1x10=10)
1.6487	Q.1	Write defir	nition of pol	ynomial.		
e it with	Q.2	Write defir	nition of root	t of an eq	ation.	
	Q.3	Write defir	nition of cha	racteristic	value prol	olem.
t to four	Q.4	Find the eig	gen value of	matrix A	$= \begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix}.$	
steps of	Q.5	Write New	ton's backwa	ard differe	ence in terp	olation formula.
	Q.6	Write one	assumptions	for inter	polation.	
	Q.7	Write form	ula of simps	son's three	e eighth rul	e.
	Q.8	Write form	ula of wedd	le's rule.		
	Q.9	Use Picard	's method fo	or first ap	proximatio	n when
		given that	when	а		
	Q.10	Write form	ula for Eule	r;s metho	d.	

Q.3	 The length of the day was 12 hours on March 19th, 14 hours on April 18th and 15 hours 40 minutes on May 18th. Estimate- a) The length of the day on May 3rd. b) The mean length of the day during the period, March 19th to May 18th. 					
OR						
	By means of Newton's divided difference formula, find the values					
	of and $f(15)$ from the following table :					
	<i>x</i> : 4 5 7 10 11 13					
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
Q.4	Find the value of $\log 2$ from , using Simson's $\frac{1}{3}$					
	rule, by dividing the range into four equal parts. Also find the					

OR and 4.4 4.6 1.5261 1.5686 1.4816 by Weddle's rule. Also compare it with

4.8

5.0

1.6094

exact value.

error.

4.0

y : 1.3863

x:

Given that

Evaluate

4.2

1.4351

Use Taylor's series method to find y for Q.5 correct to fou

> places of decimal, if satisfies with

OR

Use Runge-Kutta method to find when in steps o

.

, given that

----X-----

(2)

Find the equation whose roots are $-3, -1, \frac{5}{3}$. Q.1

OR

Find a real root of the equation $f(x) = x^3 - 4x - 9 = 0$, using bisection method in four stages.

Find the characteristics polynomial, characteristic equation and Q.2 eigen values of the following matrix :

OR

(3)

Evaluate $\int_{0}^{4} e^{x} dx$, by Simpson's $\frac{1}{3}$ rule, using the data

and compare it with the

http://www.hyvonline.com **Code No. : B-411(A)**

actual value.

0.5 Using Taylor's series find the solution of the differential equation $xy^1 = x - y$, y(2) = 2 at x = 2.1 correct to five places of decimal.

OR

Apply Euler's method solve for y at from

take

(Section-'C')

(Long answer type questions with word limit 300-350)

(5x5=25)

Apply Gauss Jordan method to solve the equations :

Q.3 Find the first term of the series whose second and subsequent terms are

OR

Find a unique polynomial of degree 2 or less, such that using Newton's divided difference interpolation formula.

Evaluate by using Trapezoidal rule. Q.4

5x5=25 (5x5=25) $5x^{3}$ (5x5=25) $5x^{3}$ (5x5=25) $5x^{3}$ (5x5=25) 3x + 4y + 578 = 2

OR

By Regula-Falsi method, find a real root of the equation

Q.2 Find the characterstic equation of the matrix

> and verify that it is satisfied by A and hence obtain OR

Apply Gauss-Jordan method to find the inverse of the matrix