Q. 2 Define Boolean algebra and give an example.

OR
Simplify the following by using Boolean algebra (B,+, ,') properties (i) (a+b) a'.b'
(ii) $\left(a^{\prime} b^{\prime} c^{\prime}\right)$ '
Q. 3 Change the following Boolean function to disjunctive normal form

OR

Change the function
to
conjunctive normal forms in which the minimum number of variables are used.
Q. 4 Prove that every subset of a countable set is countable.

OR

Let $A=R-\{3\}$ and If
show that f is objective.
Q. 5 Write a short note on chromatic number.

OR

Prove that the maximum number of edges in a simple graph with n vertices is

Code No. : C-191

Annual Examination - 2018

$$
\begin{gathered}
\text { BCA - I } \\
(\text { BCA - 101) }
\end{gathered}
$$

THEORETICAL FOUNDATION
OF COMPUTER SCIENCE

Paper - I

DISCRETE MATHEMATICS

Time : 3 Hrs.

Max.Marks: 50
Min.Marks: 20
Note : Section 'A', containing 10 very short-answer-type questions, is垂 (

2 questions and Section ' C ' consists of long answer type questions. Section 'A' has to be solved first.

Section - 'A'

Answer the following very short-answer-type questions in one or two sentences :
($\mathbf{1 \times 1 0 = 1 0)}$
Q. 1 Define a proposition (statement).
Q. 2 Define logically equivalent statements.
Q. 3 Write De Morgan's laws in a Boolean Algebra.
Q. 4 Draw the symbol in switching circuit for the Boolean formula $\mathrm{f}=\mathrm{x} . \mathrm{y}$.
Q. 5 Draw the symbol for 'AND' gate.
Q. 6 Draw the logic circuit for the following Boolean expression xz+t.
Q. 7 Write one example of objective map.
Q. 8 Define countable set.
Q. 9 Give one example of subgroups.
Q. 10 Draw two spanning tree of the graph G.

Section - 'B'

Solve the following questions :

(3 $5=15$)
Q. 1 Prove that
is a tautology where p is a statement.

OR

Simplify the following statement (P Q) P using algebra of propositions.
Q. 2 Show that the two operations + and * of a Boolean algebra B satisfies the associative law with respect to ' + ' i. e.

$$
a+(b+c)=(a+b)+c, \quad a, b, c \quad B
$$

OR

Prove that for each element \bar{a} in a Boolean Algebra B a' i. e. Complement of a is unique.
Q. 3 Write the function $x+y^{\prime}$ into conjunctive normal forms in three variables x, y, and z .

OR

Draw a simpler switching circuit for the function $\mathrm{x}+\mathrm{x} . \mathrm{y}$.
Q. 4 Define equivalence relation with an example.

OR
Define an injective map with one example.
Q. 5 Show that the following graph in an Euler graph.

Find the order and size of the graph G.

Section- 'C'
Solve the following questions :
(5 5=25)
Q. 1 Show that the statements (a) and (b) are logically equivalent where
(a) $\quad\left(\begin{array}{ll}\mathrm{p} & \mathrm{q}) \\ (\mathrm{p} & \mathrm{r})\end{array}\right.$
(b) $\mathrm{p} \quad(\mathrm{q} \quad \mathrm{r})$

OR
Prove the following contradiction :
[(p
q) $p]$ (q
q)

