Code No. : B-401(A)

Annual Examination - 2017
BCA-I
(BCA-101)
Paper - I
DISCRETE MATHEMATICS
Max.Marks : 50
Time : 3 Hrs.
Min Marks : 20
Note : Section 'A' is very short answer type, containing 10 questions, is compulsory. Section 'B' consists of short answer type questions and Section ' C^{\prime} consists of long answer type questions. Section 'A' has to be solved first.
(Section-'A')
(Very short answer type questions. Answer in one or two lines.)
$(1 \times 10=10)$
Q. 1 Define logical equivalence.
Q. 2 What is open statement?
Q. 3 What is principle of duality?
Q. 4 Write involution law.
Q. 5 What is conjunctive normal form?
Q. 6 Define Boolean function.
Q. 7 What is equivalence relation?
Q. 8 Define composition of mapping.
Q. 9 What is null graph?
Q. 10 Define spaning tree.
(Section-'B')
Short answer type questions
$(3 \times 5=15)$
Q. 1 Prove that $\sim B \wedge(A \Rightarrow B) \Rightarrow \sim A$, is a tautology.

Write a negation of the following :
i)
ii)
iii)
Q. 2 For any element a of Boolean algebra B, prove that

OR

In any Boolean algebra prove that :
Q. 3 Draw a simple circuit for switching function.

OR

Prove that the complete conjunctive normal form in two variables is identically zero.
Q. 4 Draw a tree-net for the function

OR
Write types of Boolean function with example.
Q. 5 Express the following functions in disjunctive normal form in the smallest possible number of variables :

OR

Draw the logic circuit for the following Boolean expression :

(Section-'C')

Long answer type questions

(5×5=25)
Q. 1 Prove that : $[(P \wedge Q) \wedge R]=[P \wedge(Q \wedge R)]$ is a tautology.

OR
Prove that following statement is a contradiction :
Q. 2 Draw the simple circuit for the following switching function :

$$
x \cdot y \cdot z+(x+y) \cdot(x+z)
$$

OR
In a Boolean algebra B show that if and them
Q. 3 State and prove Boole's expansion theorem.

OR
Convert the following function in conjunctive normal form:
Q. 4 If I is the set of non-zero integers and a relation defined by
 relation.

OR

If a mapping is defined by , where Q is the set of rational numbers. Then prove that the mapping is one-one onto. Also find
Q. 5 Prove that a tree with n vertices has edges.

OR

$$
\text { If a graph } \quad \text { is defined by : }
$$

$$
\begin{gathered}
V=\left\{v_{1}, v_{2}, v_{3}\right\}, E=\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right),\left(v_{1}, v_{3}\right)\right\} \\
|V|=3,|E|=3
\end{gathered}
$$

then find the adjacency matrices and the incidence of the graph G .

